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SUMMARY

Ten 12-inch-outside-diameter (OD) by 18-inch-long
silicon nitride (SigN4) cylinders were fabricated by
CERCOM, Inc., nondestructively inspected, and
assembled. They were subsequently instrumented
and pressure tested at Southwest Research Insti-
tute (SRI) under the supervision of the Naval Com-
mand, Control and Ocean Surveillance Center
(NCCOSC) RDT&E Division (NRaD) under the
Program for the Application of Ceramic to Large
Housings for Underwater Vehicles (reference 1).
CERCOM’s material, designated PSX, was chosen
for its high specific compressive strength, high
specific elastic modulus, and high fracture tough-

ness. Each cylinder was ultrasonically inspected
prior to testing and then fitted with epoxy-bonded
titanium end-cap joint rings. After being instrum-
ented with strain gages, the cylinders were pres-
sure tested cyclically and to destruction. CERCOM
has demonstrated that it can successfully and
repeatably cast 12-inch-OD by 18-inch-long cylin-
ders from PSX. These cylinders are the largest-
known monolithic silicon-nitride components ever
fabricated. All ten cylinders passed proof testing to
at least 10,000 psi. Cylinder failures can be attrib-
uted either to cyclic fatigue or to intentional pres-
surization to critical collapse pressure. Failure of
the cylinders by buckling matched closely the pre-
dictions made by hand and computer calculations.
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INTRODUCTION

Unmanned underwater vehicles (UUVs) require
pressure-resistant housings for containment of
their electronics and power supply. Currently, such
housings are fabricated from metals such as alumi-
num, titanium, or steel. However, these materials
result in very heavy housings when vehicles are
designed to operate at depths as great as

20,000 feet.

Ceramic materials, because of their high specific
compressive strength and high specific elastic
modulus, are ideally suited for application to exter-
nal pressure-resistant housings for underwater
applications. A more detailed justification for using
ceramic materials in external pressure-resistant
housings may be found in the outline for the pro-
gram under which this work was performed by the
Naval Command, Control and Ocean Surveillance
Center (NCCOSC), RDT&E Division (NRaD). See
reference 1.

One of the objectives of this program was to evalu-
ate various advanced ceramic compositions for
use in pressure-resistant housings. Compositions
evaluated include zirconia-toughened alumina
(ZTA) ceramic (reference )), silicon carbide particu-
late-reinforced alumina (SiC/Al,O3/Al) ceramic (ref-
erence 3), and silicon-nitride (SizNg4) ceramic. The
common base of comparison for testing these
materials was 96-percent alumina ceramic
manufactured by WESGO, Inc. (reference 4). This
report summarizes the fabrication, nonde-

structive inspection, and testing of ten 12-inch-
outside-diameter (OD) by 18-inch-long SizN4
ceramic cylinders fabricated by CERCOM, Inc.

BACKGROUND

NRaD has been procuring and testing cylindrical
and hemispherical components made from
ceramic over the last decade. Most of the work,
however, has focused on 94- and 96-percent alu-
mina-ceramic compositions fabricated by Coors
Ceramics Company and WESGO. When the pro-
gram for the application of ceramic to large hous-
ings for underwater vehicles began, the most

extensive testing had been completed on 94-per-
cent alumina-ceramic housings only. Testing
showed limited cyclic fatigue life under repeated
pressurixation (references 5 and 6). The eventual
failure of components due to repeated pressuriza-
tion is attributed to radial tensile stress at the
ceramic-to-titanium metal-bearing interface (see
figure 25 of reference 1). This stress leads to inter-
nal circumferential cracks which run through the
wall, eventually breaking off in shards, causing
leakage or catastrophic failure. It is believed that
one way of increasing the cyclic fatigue life of
ceramic components is to use compositions having
higher fracture toughness than alumina-ceramic
composition.

The program for the application of ceramics to
large housings for underwater vehicles gave NRaD
the opportunity to test some new ceramic composi-
tions exhibiting greater fracture toughness. These
include silicon-nitride ceramic, ZTA ceramic, and
Lanxide’s silicon carbide particulate-reinforced alu-
mina-ceramic composition (90-X-089). Silicon
nitride ceramic was chosen for evaluation because
of its high fracture toughness, high compressive
strength and elastic modulus, and low specific
gravity. Sintered reaction-bonded silicon nitride
(SRBSN) was chosen because it is the composi-
tion CERCOM offered to make for NRaD under
competitive contract award. CERCOM was the
lowest bidder meeting the physical property
requirements chosen by NRaD.

FABRICATION APPROACHES

There are two generic types (based on fabrication
route) of silicon nitride that can meet the general
material and performance requirements for pres-
sure housings used for deep submergence ser-
vice: sintered silicon nitride (SSN) produced by
Si3N4 powder, and sintered reaction-bonded sili-
con sitride (SRBSN) produced from Si metal power
(figure 1).1 CERCOM, with extensive expertise
producing components using both fabrication
approaches, has selected the SRBSN process as
the most appropriate for this application.

1Figures and tables are placed at the end of the text.
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The selection methodology was based not only on
the material mechanical property requirements, but
also on the manufactured material reliability, fab-
rication adaptation to the required component size
and shape, cost competitiveness, and scale-up
ability to larger diameter housings. In short, the
SRBSN process offers the flexibility for material
and manufacturing design to produce high-quality
ceramic pressure housings.

SRBSN PROCESSING

The standard SRBSN process, as shown in fig-
ure 1, consists of (1) comminuting and blending
silicon metal powder and selected sintering aids,
(2) cold forming the powder mixture into a net
shape, (3) nitriding the green compact to convert
the silicon metal to silicon nitride and concurrently
reacting the sintering aids to form second-phase
compounds, and (4) thermally consolidating the
reaction bonded preform to a fully dense state.

CERCOM presently uses this basic fabrication pro-
cess to manufacture eight different grades of sili-
con nitride. Each grade is engineered for a specific
application; i.e., properties are developed through
grain boundary and microstructural engineering to
meet the specific needs of the application. For
example, CERCOM manufactures one grade of
SigN4 (CI SisN,) designed specifically for use as an
indexable cutting tool for the high-speed machining
of cast iron. Another grade, known as NB Si3N4, is
manufactured for the use of machining nickel base
alloys. In these examples, the chemistry and
nature of the grain boundary (crystalline vs. amor-
phous) for each grade is developed to maximize
wear resistance under the conditions found at the
interface between the metal work piece and cut-
ting tool.

Another application example relates to the engi-
neering of a suitable silicon nitride used for the
balls of ball-valve assemblies in pump mecha-
nisms. These pumps are used in “down-hole”
applications for extracting oil where the compo-
nents are subjected to severe pressure changes
and a variety of corrosive environments including
salt water/brine. To meet these and other require-
ments, CERCOM developed a pressureless, sint-
ered grade of SigN4 designated as PSX (see

table 1 for typical property data). The intergranular
phase (grain boundary) was engineered to be crys-
talline so that the material would resist corrosion
and have good impact resistance (optimal fracture
toughness).

As illustrated, silicon nitride can be considered a
family of materials in the same manner as stain-
less steel or brass. In material families certain
characteristics are shared, but vary sufficiently to
permit the engineering of properties for specific
applications. The family concept for silicon nitride
originates with the ability to promote sintering with
many different densification aids and with the abil-
ity to fabricate bodies by a wide variety of available
processing routes.

Below its dissociation temperature, the atomic
mobility of SizN4 is insufficient to produce the mass
transport required for full densification. Additives
that promote densification through the formation of
a liquid phase are required (alloying). Theoretically,
dense silicon nitride can be produced with the
addition of one or more oxides, such as MgO,
Y,03, Al,O3, SiO,, ZrO,, and CeO,. The type and
amount of additive used in conjunction with the
selected densification process and heat treatment
will largely determine the resultant properties of the
material. For example, certain additives or additive
combinations will produce an amorphous intergran-
ular phase, whereas crystalline phases are pro-
duced by other additive selections and/or precise
heat treatments. The nature of the intergranular
phase will strongly influence the performance char-
acteristics of the material.

As shown, with the many possibilities in additive
selection coupled with a wide variety of fabrication
routes, the family of silicon nitride is large. From
this material family, CERCOM selected the PSX as
the most appropriate for submersible applications.
PSX is produced using the SRBSN process; where
densification is accomplished using a proprietary
pressureless sintering (PS) technique. The mate-
rial is characterized as isotropic with a high frac-
ture toughness—an important requirement for
pressure housings. The material also has excellent
corrosion resistance because of the crystallized (X)
intergranular phase and has excellent strength with
good reliability.
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OBJECTIVES

The objectives of fabricating and testing CER-
COM’s PSX ceramic cylinders were:

1. To evaluate CERCOM'’s ability to fabricate
12-inch-OD by 18-inch-long PSX cylinders.
These parts are the largest known monolithic
PSX parts ever to be fabricated. Cylinders
were to be nondestructively inspected to
determine whether this composition could be
fabricated relatively free of defects.

2. To determine the structural performance of
PSX under external hydrostatic pressure load-
ing. The structured performance parameters
investigated included cyclic fatigue life and
critical collapse pressure.

3. To compare the performance of the SRBSN
SizN4 composition against the performance of
the baseline composition, WESGO'’s AL-600
96-percent alumina ceramic.

APPROACH

The test plan for the ten cylinders included fabrica-
tion, quality assurance, and pressure testing.

FABRICATION

PSX Fabrication Process

An overview of the fabrication process for PSX is
presented in figure 2. The overall process begins
with the selection of raw materials: silicon metal,
and Y,03 and Al,O3 powders (densification aids).
The raw materials require comminution, blending,
and homogenization. The processed powders are
shaped into cylinders by cold-isostatic pressing.
The cylinders are partially nitrided to allow for
rapid, conventional green machining. The
machined net-shaped parts are nitrided to convert
the remaining silicon to silicon nitride and then
densified using pressureless sintering technology.
Cylinders are finished to final dimensions by dia-
mond grinding, and all components are inspected
and characterized to ensure quality. Note that the

process flow appears to be “straightforward,” and,
generally, it is for standard shapes and sizes. How-
ever, for the cylinder sizes required for this pro-
gram, the required logistics for each step became
a major technological challenge.

Powder Processing

Powders of silicon metal, Y,O3, and Al,O3 are
sealed into a jar mill with grinding media and a
nonaqueous carrier fluid. Comminution and
homogenization of the powder blend is achieved
by rolling the jar mill for a specified speed and time
interval. To maintain process consistency, the
slurry viscosity is monitored and adjusted during
milling/homogenization, as required, by carrier fluid
additions. Silicon nitride grinding media (PSX com-
position) prevents contamination due to media
attrition. All powder handling and processing is per-
formed in a controlled environment to eliminate
air-borne contamination which can form inclusions
in finished components. After achieving satisfac-
tory homogenization, the powder slurry is dried,
screened, and readied for green forming.

Cold-Isostatic Pressing (Isopressing)

A variety of processes have been used for the con-
solidation of Si metal and SisN,4 green parts. The
green forming technique of choice for large cylin-
ders is usually isopressing—the technique used
here. Isopressing is a well-defined procedure for
consolidating silicon-based powders and offers a
number of advantages:

1. A uniform, homogenous powder mixture can
be handled and pressed without exposure to
air and moisture.

2. Isopressed cylinders can be fabricated with-
out binders, eliminating the need for burn-out
normally required for injection molded or slip
cast processed parts.

3. Isopressed cylinders can be produced with
the controlled and uniform porosity required
for pre-nitriding and nitriding.

4. Isopressing can be adapted to high-rate, full-
scale production.
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5. Isopressed cylinders are easily analyzed
using standard instrumental techniques and
high-resolution computed tomography to
assure that critical size inclusions and agg-
lomerates are not present.

6. Isopressing produces green-formed parts with
uniform cross sections with relatively high
density.

7. Controlled uniform, high-density isopressed
parts result in low sintering shrinkage.

The procedure requires a tooling set consisting of
a metal mandrel and a rubber bag with end caps
(see figure 3 for build-up schematic). The mandrel
forms the inside diameter (ID) of the isopressed
cylinder, the rubber bag defines the OD, and,
together with the end caps, they define the press-
ing or powder cavity. The rubber bag also trans-
mits the hydrostatic pressure into the pressing
(powder) cavity during the pressing cycle.

The metal mandrel is first placed into the rubber
sleeve. The blended powders are weighed and
charged into the pressing cavity under a controlled
environment using vibrational energy. The cavity is
capped, sealed, and treated with vacuum to
ensure de-airing. The mold then is placed into a
hydrostatic chamber, where pressure is isostati-
cally applied to the mold through a fluid. The
pressed cylinder is examined visually to ensure the
absence of cracks.

Pre-nitriding Green Cylinder

When large silicon metal cylinders are isopressed
they have insufficient strength for extensive han-
dling or green machining. There are two tech-
nigues that can be used to increase the strength of
green-formed silicon metal compacts: (1) argon
sintering and (2) pre-nitriding.

Argon sintering involves heating the isopressed
form in an argon atmosphere at about 1150
degrees C for several hours, resulting in slight
fusion of silicon metal grains at contact points
between particles in the compact. The fusion
causes some shrinkage which can lead to
increased problems during nitriding, particularly for

large cross section parts because of diminished
gas paths (may lead to incomplete nitriding).

The other technique for achieving acceptable han-
dling strengths for green machining is termed pre-
nitriding, which was the process used for this
program. Pre-nitriding, simply, uses a shortened
nitriding cycle to achieve the partial conversion of
silicon metal to silicon nitride, thereby developing
sufficient strength for subsequent green machining
using conventional cutting tools and techniques.
Optimum pre-nitriding conditions are those where
about 10 percent of the normal nitrided weight gain
is realized. Pre-nitrided cylinders with insufficient
weight gains do not have sufficient strength for
green machining, whereas cylinders with excessive
weight gains become too “hard” and brittle for
green machining with conventional tooling.

Green Machining

The OD and the cylinder ends are green machines
on a lathe using carbide cutting tools without cool-
ants. The ID of the cylinder is determined by the
size of the isopress metal mandrel; therefore, the
ID does not require green machining.

Nitriding

Nitriding is carried out in a cold-wall vacuum fur-
nace (figure 4) where all interior construction mate-
rials are selected for their overall inertness.
Heating elements, hearth, and heat shields are
fabricated from molybdenum and high-purity alu-
mina is used as insulation. The green-formed cylin-
ders are placed on SizN4 plates within the furnace
hot zone. The furnace vessel is evacuated to out-
gas the green ware and construction materials.
Gas backfill techniques are used to assist this pro-
cedure. Once the system integrity is confirmed by
a leak check, the temperature is raised to 600
degrees C and held until a vacuum to 10-3 torr or
lower is established. This procedure assists the
outgassing process and removes all chemically
combined water and residual volatiles associated
with the system. The furnace then is backfilled to a
pressure of 20.0 kPa with a gas containing 3 per-
cent Hy, 25 percent He, and 72 percent N5 for the
remainder of the cycle.
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The conversion process takes place in the temper-
ature range of 1100 to 1400 degrees C with two
principle nitriding reactions:

3 Si(s)+2Nx(g) — = SisNa(s) (1)

3 Si(g)+2N2(g) —— Si3N4(s) (2

Successful nitridation is achieved by precise
control over the highly exothermic nature of reac-
tions (1) and (2). The kinetics at a given tempera-
ture produce an initial rapid nitriding rate which
slows until an essentially complete reaction asym-
tote is reached (Arrhenius curve). Therefore, the
acceptable technique for “exotherm” management
is to proceed incrementally, beginning at 1100
degrees C through the nitriding temperature range.
At each temperature increment, the nitriding rate is
allowed to reach its asumtote level before the tem-
perature is increased again. Continuing this pro-
cess to the maximum nitriding temperature of
1400 degrees C will result in full conversion of the
silicon-to-silicon nitride. The time required at a
given temperature for the reaction rate to reach the
asymtote level is dependent upon many variables.
Some of the most critical variables are Si metal
purity, surface area and particle size, compact
green density, and cross-sectional thickness. If
management of the exotherm is not precise, the
kinetics will cascade and the heat generated by the
reaction will cause melting of the silicon. Once
melted, the silicon coalesces and cannot be
nitrided.

Sintering

Sintering is performed in an environmentally con-
trolled graphite vacuum furnace, as shown in fig-
ure 5. Thermal consolidation (densification) is
accomplished through a liquid-phase sintering
technique known as solution-recrystallization. Dur-
ing sintering, the sintering additives form a liquid
which promotes the alpha-to-beta phase trans-
formation in SigN4. The sintering temperature is
selected to be high enough to form the liquid
phase, but low enough not to sublimate SigNjy.
Special sintering tooling is designed for dimen-
sional control of the component during densifica-
tion. This technique allows for minimal distortion
during sintering. Figure 6 shows the sintered part.

The sintered cylinder is machined with an OD/ID
grinding machine (figure 7). Both diameters, as
well as length, are diamond ground to print. Test
specimens also are machined from the “extra
lengths” from all sintered cylinders.

QUALITY ASSURANCE

Quality assurance includes dimensional and dye-
penetrant inspection, material characterization,
and ultrasonic inspection of each cylinder.

Dimensional Inspection

Dimensional inspection of the ten silicon-nitride
cylinders shows that the actual cylinder dimen-
sions do not conform to the drawing dimensions.
CERCOM had difficulty pressing parts which had
enough stock to grind to the desired drawing
dimensions. Dimensions were allowed to be
altered slightly, however, the requirement that the
wall-thickness-to-diameter ratio remain constant
had to be met. Table 2 is a summary of cylinder
dimensions. Cylinders 006 and 007 were short-
ened due to cracks which were found near the
ends of the parts.

Dye Penetrant Inspection

Dye penetrant inspection of each cylinder was per-
formed. Only cylinders without cracks were deliv-
ered.

Material Characterization

The material characterization consists of elasticity,
compression strength, flexural strength, and frac-
ture toughness measurements. All characteriza-
tion, with the exception of elasticity, is conducted
on actual cylinder material. That is, all cylinders
were fabricated with excess length. The excess
material was removed during diamond grinding of
the cylinder and prepared into specimens appropri-
ate for characterization. The elasticity properties
were measured from specimens fabricated from
“like” processed materials.

Young’s Modulus, shear modulus, and Poisson’s
Ratio are measured using the acoustic resonance
method, as described in ASTM C848-78. The
compression tests follow the procedures outlined
in ASTM C773. The flexural strength, or Modulus
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of Rupture, is measured using a four-point bending
test; performed to MIL-STD-1942 specification
using the Type B testing configuration. The Weibull
model also is applied for statistical data analysis.
That is, both the Weibull Modulus and the charac-
teristic strength are calculated using this model.
The Weibull Modulus is a realtive indicator of
material reliability. The higher the Weibull Modulus,
the more reliable the data for design purposes.
The characteristic strenght, always presented in a
Weibull analysis, is the stress condition where the
probability of failure is 63 percent.

Fracture toughness is measured using the Vickers
Indentation Technique. The toughness measure-
ment is based on crack propagation under point
loading. After diamond indenting the specimen,
four lateral cracks are generated from the corners
of the indent (figure 8). The fracture toughness is
calculated from the loading and the crack length,
using the equation outlines by Hiihara (J. Mat. Sci.
Let. 1, 1982, pg. 13). Table 3 tabulates the data
generated for all fabricated cylinders.

Pulse-Echo Ultrasonic Inspection

Each cylinder was ultrasonically inspected by the
pulse-echo ultrasonic inspection technique. The
inspection was performed by Sonic Testing and
Engineering, Inc. (Southgate, CA). Sonic Testing
and Engineering used a 3/8-inch diameter, 3-inch
focal length, 10-MHz transducer to perform the
inspection. A small tile with flat-bottom drilled holes
(see figure 10) was used as a calibration standard.
This tile was made from the same composition as
the cylinders. Details about the pulse-echo ultra-
sonic inspection technique and other nondestruc-
tive inspection techniques for ceramic components
can be found in references 7 and 8. Table 4 lists
the results of the ultrasonic inspection. It shows
that some of the cylinders had numerous large
defects, while others had almost none. The first
few delivered cylinders were the “cleanest.” CER-
COM attributes the dramatic difference in the num-
ber of defects to program changes made between
cylinders. Isostatic pressing facilities were changed
during the program. Green body quality could have
been affected by any number of variables including
weather, humidity, facility cleanliness, and proces-
sing schedule.

PRESSURE TESTING

Test Setup

Three types of assemblies were tested. They dif-
fered in the type of end closure used (hemispheri-
cal or flat) and the type of titanium end-cap joint
ring used.

Hemispherical end closures were planned for use
in cyclic tests, while flat end plates were planned
for use in implosion tests (these being more
rugged and, therefore, more capable of withstand-
ing the force of the implosion at high pressure,
making them reusable). At program initiation, it
was not planned to cycle any cylinders above
12,000 psi. The machined hemispherical ends
were calculated not to provide enough buckling
resistance above 12,000 psi. For this reason, all
cyclic tests above 12,000 psi were run using flat-
end plates.

The difference in the two titanium end-cap joint
ring designs is the external seal. NRaD Mod 1,
Type 2 end caps have a lip on the OD. During cyl-
inder assembly, a silicon sealant is applied to this
lip. NRaD Mod 1, Type 1 end caps do not have a
lip. Type 1 end caps were originally intended for
use in proof and implosion tests; Type 2 end caps
were originally intended for cyclic tests because
they were believed to ensure a better seal under
repeated pressurization.

The three types of assemblies can be summarized
as follows:

Assembly End Cap End Closure
Type | Type 2 Hemispherical
Type Il Type 2 Flat Plate
Type Il Type 1 Flat Plate

Test assembly Type 1 is shown in figure 11. NRaD
Mod 1, Type 2 end caps (figure 12) are epoxy
bonded to the ends of the ceramic cylinder using
the procedure described in note 4 of figure 11. A
0.010-inch-thick manila paper gasket (figure 13)
ensures a minimum 0.010-inch thickness of epoxy
on the bearing interface between the ceramic and
titanium.
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Cylinders 001 through 005 were bonded onto the
smoothly machined ceramic surface finish. How-
ever, test personnel noticed extrusion of epoxy on
the ID of some of the cylindrical test specimens
after pressure testing. It was decided that a better
bond between the titanium and ceramic could be
achieved if the ceramic surface to which the end-
cap joint rings would be bonded was grit blasted
prior to bonding. The bond surfaces on cylinders
006 through 010 were sandblasted by CERCOM.

In test assemblyType 1, the cylindrical assembly is
closed at both ends by titanium hemispheres (fig-
ure 14). The assembly is made watertight by a sur-
face seal using a nitrile O-ring (figure 15) for which
there is an O-ring gland machined into the titanium
end-cap joint ring. The titanium hemisphere is
joined to the titanium cylinder via a V-shaped steel
clamp band (figure 16).

Each cylinder was instrumented with five
CEA-06-250-UT-120 strain gage rosettes. These
were located at the center of the cylinder length
and spaced 72 degrees apart. Each of the
1/4-inch, 90-degree rosettes had one leg oriented
in the hoop direction and the other in the axial
direction. Electrical leads for the strain gages were
passed through the pole of the upper hemisphere
via a plug (figure 17) held in place by a washer
(figure 18) and nut on the inside of the hemi-
sphere. The bottom hemisphere had a drain plug
which could be opened to determine whether there
had been any leakage during testing. A cylindrical
wooden plug (figure 19) was placed inside the
assembly to mitigate the shock of implosion should
failure occur.

Figure 20 shows test assembly Type 2. This test
assembly is identical to test assembly Type 1,
except that the cylinder ends are closed by flat
steel bulkheads (figure 21) instead of titanium
hemispheres.

Figure 22 shows test assembly Type 3 which uses
NRaD Mod 1, Type 1 titanium end caps (figure 23)
instead of the Type 2 end caps used in test assem-
bly Type 2. Test assembly Types 2 and 3 are held
together by four 1/2-inch tie rods (figure 24). Strain
gage leads are passed through the feed through
shown in figure 25. The force of implosion is miti-

gated by a cylindrical wooden plug (figure 26). Fig-
ure 27 shows a fully machined cylinder. Figure 28
is a fully machined cylinder with NRaD Mod 1,
Type 2 end caps epoxy-bonded to it.

Pressure Testing

Pressure testing was performed in accordance
with the test-plan/result summary shown in table 6.
Strains were read at 1,000-psi intervals on the first
pressurization for each cylinder. When cylinders
were to be purposely taken to failure pressure,
strains also were read during the second cycle. In
some of the tests where the cylinder withstood all
planned pressure testing, at least one end cap was
removed using the end-cap removal fixture shown
in figure 29.

The method of end-cap removal involves heating
the cylinder end to be removed, which breaks
down the epoxy, and then pulling the end cap off
the cylinder. Adequate force can be applied to
remove the end cap by using the mechanical
advantage of turning nuts on the four 1/2-inch-
diameter tie rods. After the end caps were
removed, the cylinder was cleaned and taken to
Sonic Testing and Engineering for pulse-echo ultra-
sonic inspection to determine the presence and
extent of internal circumferential cracking.

The following are brief summaries of the pressure
testing for each of the cylinders:

Cylinder 001 was proof tested to 16,000 psi and
inspected for damage. Strains were read at
1,000-psi intervals and plotted (figure 30). After the
proof test, the cylinder was subjected to pressure
cycling at 16,000 psi to external pressure (this cor-
responds to and average maximum membrane
stress of 233,010 psi). Testing was terminated
after 581 cycles because the cylinder was leaking
at one end. The cylinder was shipped back to
NRaD, and the end caps were removed. Figure 31
shows the circumferential cracking on the bearing
surface of the cylinder. Figure 32 is a full-scale
C-scan of this end. Cracking was extensive (up to
5.7 inches in length). The C-scan of the other end
(figure 33) shows almost no cracking.

This cylinder demonstrates that extensive internal
circumferential cracking can exist in a cylinder
without catastrophic failure. It is possible that the
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leakage of water into the space between the
ceramic and the titanium end-cap joint ring may
have accelerated crack growth, a phenomenon
known as street-corrosion cracking.

The extrusion of the epoxy on this cylinder con-
vinced NRaD that the smooth ceramic surface was
not bonding strongly to the epoxy and the titanium.
It was decided that the ends of the remaining delib-
erable cylinders would be sandblasted to facilitate
bonding. The first deliverable sandblasted cylinder
was 006.

Cylinder 002 was proof tested to 16,000-psi exter-
nal pressure. Strains were read and plotted (fig-
ure 34). The cylinder was inspected, and no
damage was noted. The cylinder was then cycled
at 16,000-psi external hydrostatic pressure when it
failed on cycle number 337.

Cylinder 003 was proof tested to 13,000-psi exter-
nal pressure. The strains were read and plotted
(figure 35). Subsequently, the cylinder was cycled
at 13,000 psi until failure on cycle number 1,379.

Cylinder 004 was proof tested to 9,000-psi exter-
nal pressure. Strains were read and plotted (fig-
ure 36). The test plan called for cycling the cylinder
3,000 times to 9,000 psi. Testing was actually ter-
minated after 3,008 cycles. The cylinder was
shipped back to NRaD where one end-cap joint
ring was removed and that end of the cylinder was
sonically inspected. The pulse-echo ultrasonic
inspection revealed no internal circumferential
cracking.

Cylinder 005 was proof tested to 12,000-psi exter-
nal pressure. Strains were read and plotted (fig-
ure 37). The cylinder was inspected for damage
and then cycled to 12,000 psi until it failed on cycle
number 743.

Cylinder 006 was the first cylinder with sand-
blasted ends to be tested. The cylinder was proof
tested to 12,000 psi external pressure. Strains are
plotted in figure 38. The cyclinder withstood

2,241 cycles to 12,000 psi without failure or visible
damage. Testing was terminated because the test
plan only called for 2,000 cycles. This cylinder was
not ultrasonically inspected due to budgetary
constraints.

Cylinder 007 was proof tested to 11,000-psi exter-
nal hydrostatic pressure. Strains were plotted in
figure 39. This cylinder withstood 3,010 cycles to
11,000 psi without visible damage. Testing was
terminated because the test plan called for

3,000 cycles. This cylinder also was not ultrasoni-
cally inspected due to budgetary constraints.

Cylinder 008 was proof tested to 11,000 psi. No
damage was noted. Strains are plotted in figure 40.
The cylinder failed on the 1,665th pressurization to
11,000 psi.

Cylinder 009 was proof tested to 10,000 psi.
Strains are plotted in figure 41. The cylinder was
inspected for damage and then pressurized to fail-
ure which occurred at 22,600 psi. Strains to failure
are plotted in figure 42.

Cylinder 010 was proof tested to 10,000 psi.
Strains are plotted in figure 43. The cylinder was
inspected, and no damage was noted. It then was
pressurized to failure which occurred at 21,600 psi
external hydrostatic pressure. Strains to failure are
plotted in figure 44.

A summary of test plan and test results is shown in
table 6.

TEST OBSERVATIONS/DISCUSSION

MATERIAL PROPERTIES

The measured material properties are shown in
table 3. All material properties met or exceeded the
material property requirements shown on the cylin-
der drawing (figure 9) with the exception of Weibull
Modulus which was measured to be 11.1 with a
low of 8.6 in cylinder 006 and a high of 20.4 in cyl-
inder 010.

The average measured specific gravity was
3.27 gm/cc.

The mean Young’s Modulus was 43,960,000 psi
with a standard deviation of only 340,000 psi.
Young’s Modulus ranged from 43,500,000 psi to
44,690,000 psi. The average Poisson’s Ratio
was 0.26.

The mean compressive strength was measured to
be 486,600 psi with a standard deviation of
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17,900 psi. Flexural strength was measured to be
102,900 psi with a standard deviation of 5,300 psi.

The mean fracture toughness was measured to be
6.1 MPaem/2 with a standard deviation of

0.2 MPaem12, a minimum value of 5.8 MPaem/2,
and a maximum measured value of 6.2 MPaem1/2.

STRAINS

Axial and hoop strains were measured and plotted
for the proof cycle and in cylinders 009 and 010 for
the pressurization to failure. Strain plots show that
both the axial and the hoop strains remain within
close range of each other circumferentially (stan-
dard deviation does not exceed 10 percent on axial
strains and 7 percent on hoop strains) and remain
linear up to within about 1,500 psi of failure, at
which point the hoop strains diverge rapidly due to
the buckling deformation of the cylinder (see fig-
ures 42 and 43). Table 5 summarizes strain read-
ings at 10,000-psi external pressure. Strain
measurements taken on the second pressurization
to 10,000 psi in cylinders 009 and 010 show no
significant difference in strain readings between
the first and second cycle as was found in the sili-
con-carbide particulate-reinforced alumina ceramic
(Lanxide composition 90-X-089). Therefore, silicon
nitride does not appear to exhibit a compaction
effect.

Young'’s Modulus and Poisson’s Ratio were calcu-
lated for each cylinder using the simultaneous
solution of the following equations:

A thick-wall stress equation from reference 9 was
used to compute the expected stress at 10,000-psi
external psi on the ID of the cylinder:

— qaZ
Oaxial = 2 — D2
_ — Qg2a?
Ohoop = a2 — p2
where q = external pressure
a = outer radius
b = inner radius

Then, the following two equations were solved
simultaneously for compressive modulus and Pois-
son’s Ratio:

€axial = %(aaxial - yahoor)
-1 _
€hoop = E(Ghoop yaaxial)
where E = compressive (Young’s) modulus
vy = Poisson’s Ratio

The average calculated Poisson’s Ratio was found
to be 0.275. This value, with its standard deviation
of 0.006, is not within range of the measured value
of 0.262 with standard deviation of 0.006. The
mean calculated Young’s Modulus was 45.25 Msi
with a standard deviation of 1.11 Msi; this
exceeded the measured Young’s Modulus of
43.96 Msi.

STRUCTURAL PERFORMANCE

The structural performance of the ten silicon nitride
cylinders tested was very good. None of the cylin-
ders failed on the first (proof) cycle. Proof pres-
sures ranged from 10,000 psi to 16,000 psi. Critical
collapse pressure exceeded 21,600 psi. The good
structural performance is more impressive when
one considers the number of defects detected in
the cylinders during pre-service ultrasonic inspec-
tion.

CYCLIC FATIGUE LIFE

Cyclic fatigue life data shows that the silicon-nitride
cylinders had poor (low) fatigue life at a high stress
level (190,000 psi membrane stress). Testing
showed that fatigue life improved significantly
when membrane stress levels were below

175,000 psi. This is demonstrated by cylinders
004, 006, 007, and 008.

The sandblasting of the cylinder ends seemed to
have a dramatic effect on the cyclic performance
of the cylinders. It can be stated that cylinders 006
through 008 performed significantly better than
cylinders 001 through 005. The difference is espe-
cially noteworthy between cylinders 005 and 006.
Cylinder 006 had sand-blasted ends, while cylinder
005 did not. When cycled at the same level of
stress (approximately 175,000 psi), cylinder 005
failed after 743 cycles while cylinder 005 exceeded
2,241 cycles. These two cylinders did not differ
significantly in the number of internal defects, size,
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or in material properties (cylinder 006 had lower
flexural strength but higher fracture toughness).

The very poor performance at a high stress level
(233,000 psi) of cylinders 001 and 002 show that
cyclic fatigue life degrades quickly with increased
levels of stress. However, the excellent perfor-
mance of cylinders such as cylinder 004, which
withstood 3,008 cycles to 9,000 psi (131,000 psi)
and showed no signs of internal circumferential
cracking during pulse-echo ultrasonic inspection,
shows that the material performs extremely well at
the intended design stress level of 131,000 psi at
an ocean depth of 20,000 feet.

Silicon nitride still presents some level of unpre-
dictability in cyclic fatigue life as evidenced by cyl-
inders 007 and 008. These cylinders both had
sandblasted ends and were tested to the same
level of stress (160,000 psi), yet their perfor-
mances differed dramatically, with cylinder 007
withstanding 3,010 cycles and cylinder 008 failing
on cycle number 1,665.

CONCLUSIONS

The objectives of this study were met:

1. Evaluate CERCOM's ability to fabricate
12-inch-OD by 18-inch-long SizN4 cylinders.
Nondestructively inspect the cylinders to
determine whether this ceramic composition
can be fabricated relatively free of defects.

CERCOM was able to fabricate the cylinders,
but not without difficulty. The difficulties
appeared to be related to logistics, rather than
technical feasibility problems. CERCOM had
numerous problems pressing quality parts,
leading to a high reject rate and eventually
forcing CERCOM to make parts with modified
dimensions to meet NRaD’s delivery require-
ments. The fact that the first five cylinders
delivered met dimensional requirements and
appeared to have the highest quality (in terms
of number and size of defects detected) dem-
onstrated that the difficulties were not of a
technical nature.

2. Determine the structural performance of SigN4
under external hydrostatic pressure loading.
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The structural performance parameters inves-
tigated include critical collapse pressure and
cyclic fatigue life.

The structural performance of the silicon
nitride cylinders was excellent. None of the
cylinders failed on proof test, even with the
numerous defects found in some of the cylin-
ders. The critical collapse pressure exceeded
the design pressure (9,000 psi) by more than
a factor of two. The structural performance of
silicon nitride can be considered predictable.

The cyclic performance of the silicon nitride
cylinders is not as predictable as would be
desired. However, the conclusion can be
drawn that the cyclic life can exceed 1,000
cycles at stress levels below 175,000 psi.
Cyclic performance degrades significantly at
stress levels above 175,000 psi. Evidence
indicates that cylinders with ends sandblasted
before end-cap joint rings are epoxy-bonded
to them perform better cyclically than those
without sandblasted ends. The data gener-
ated by cyclic pressurization of the cylinders
was not sufficient to draw any conclusions
about the relationship between any one mate-
rial property and cyclic performance.

Compare the performance of the SRBSN sili-
con nitride composition against the perfor-
mance of the baseline composition,
WESGO'’s AL-600 96-percent alumina
ceramic (reference 4).

Table 7 compares the cyclic fatigue perfor-
mance of PSX silicon nitride cylinders and
AL-600 cylinders subjected to external pres-
sure cycles. This table indicates that the
structural performance of PSX silicon nitride is
comparable to AL-600. AL-600 cylinders
showed a clear trend of decreased fatigue life
as the peak external pressure of each cycle
was increased. The relationship between
cyclic life and peak external pressure for each
cycle was not as defined for the PSX silicon
nitride cylinders tested for this report. The
more predictable behavior of the AL-600 cylin-
ders can be attributed to the WESGO'’s sub-
stantial prior experience in fabricating large
hull shapes from their alumina-ceramic com-
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positions. On the other hand, the silicon
nitride cylinders that were evaluated repre-
sented the largest parts fabricated by CER-
COM using their PSX composition, and,
consequently, some manufacturing difficulties
were encountered.

Table 8 contains the material properties of
CERCOM'’s PSX silicon nitride and WESGO's
AL-600 96-percent alumina ceramic. The
properties of WESGQO'’s ZTA ceramic (refer-
ence 2) and Lanxide’s 90-X-089 SiC/Al,O3/Al
composition (reference 3) are included for
comparison. As the table shows, SigN4 has
better properties than AL-600 96-percent alu-
mina ceramic with the exception of compres-
sive modulus and Weibull Modulus. Ninety-six
percent alumina ceramic’s higher elastic
modulus turns out to be important as designs
are often driven by buckling requirements.
The difference in Weibull Modulus could
account for the difference in the predictability
of the material during cyclic testing.

It should be noted that SisN4 has the highest com-
pressive strength, the highest flexural strength,
and the lowest specific gravity of the four composi-
tions evaluated as part of the program for the
application of ceramic to underwater pressure
housings. Figure 45 shows W/D vs. depth curves
for SisN4 and 96-percent Al,O3. The example is for
a housing having a length-to-diameter ratio of 1.5.
The maximum design stress level for both materi-
als is chosen for a cyclic fatigue life of 1,000 cycles
to design depth. Although the curves change for
different length-to-diameter ratios, the general
trend remains the same.

RECOMMENDATIONS

The following recommendations are made based
on the testing of the ten CERCOM PSX Si3Nyg
12-inch-OD by 18-inch-long by 0.412-inch-thick
cylinders.

1. CERCOM composition PSX silicon nitride is
recommended for use in the construction of
external pressure housings of up to
12-inch-OD by 18-inch-long measurements.
Use of the composition for cylinders with
dimensions greater than this is recommended
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only after a thorough test-and-evaluation pro-
gram.

If CERCOM'’s PSX silicon nitride composition
is to be used in an underwater external pres-
sure application and 1,000 cycles to design
depth are expected, then the design should
be such that maximum nominal membrane
stress does not exceed 160,000 psi. The
engineering properties to be used for engi-
neering calculations and to be called out on
the engineering drawing should be:

Compressive strength: 460,000 psi
Compressive Modulus: 43.9 Msi
Flexural Strength: 100,000 psi
Fracture Toughness: 6.0 ksi (in1/2)
Specific Gravity: 3.275 glcc
Poisson’s Ratio: 0.26

Standard finite-element analysis and buckling
analysis can be used to analyze pressure-
housing designs using CERCOM’s PSX sili-
con nitride.

Furthermore, the cylinder assembly design
should incorporate Mod 1, Type 2 end-cap
joint rings bonded in accordance with note 4
of figure 9 to a ceramic surface which has
been roughened by sandblasting on the OD
and ID circumferential surfaces of the part.

Prior to putting the cylindrical assembly
together, the ceramic cylinder should be
inspected ultrasonically. A pulse-echo ultra-
sonic inspection using a 3/8-inch diameter,
3-inch focal length, 10-MHz transducer is rec-
ommended. The circumferential scanning
interval should be 0.010 inch.

Cylinders should be inspected by an ultra-
sonic method for internal circumferential
cracks every 100 dives to 75 percent or more
of design depth. A handheld thickness-detec-
tor unit may be sufficient to perform this
inspection. Detection of internal cracks
extending beyond the titanium end-cap joint
rings should signal the removal of that
ceramic cylinder from service.

Because silicon nitride shows promise for
future application to housings for underwater
service, it is recommended that the fabrication
process be scaled up to 20-inch-OD by
30-inch-long cylinder sizes.
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GLOSSARY

alumina aluminum oxide

ASTM American Society for Testing
of Materials

FEA finite element analysis

FEM finite element models

Modulus of Rupture
ID

L
L/OD

MOR
NDE

oD

flexural strength
inside diameter

Length
length-to-outer-diameter ratio

modulus of rupture
nondestructive evaluation

outside diameter
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PS
PSX

SF

SSN

specific strength
SRBSN

t/OD

uuv
W/D

ZTA

pressureless sintering
CERCOM's pressureless,
sintered grade of SizN4

safety factor (factor of safety)
sintered silicon nitride
strength-to-density ratio
sintered reaction-bonded
silicon nitride

thickness
thickness-to-outer-diameter
ratio

unmanned underwater vehicle

weight to displacement

zirconia-toughened alumina
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SRBSN PROCESSING

Si Metal Powder
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Green Shaping

| Densification l

Figure 1. Process flow diagram for SRBSN and SSN fabrication.
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Figure 2. Fabrication process for PSX.
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RUBBER END CAP

SEAL RING

METAL

RUBBER BAG
MANDREL —

Figure 3. Schematic of cold isostatic-pressing tooling set.
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Figure 4. Cold-walled, vacuum-nitriding furnace shown with nitrided cylinder.
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8/64" dia. flat-bottomed hole

5/64" dia. flat-bottomed hole

2/64" dia. flat-bottomed hole

Standard was scanned using a 3/8" diameter,
3" focal length, 10 MHz transducer.
Scan spacing: 0.010"

Figure 10. Pulse-echo C-scan of Si3N4 ceramic calibration standard used for
inspection of deliverable components.
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Figure 28. Photo of fully machined Si3N4 ceramic cylinder with titanium end rings bonded in
place.
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Figure 30. Pressure vs. strain plot for cylinder 001.
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Figure 34. Pressure vs. strain plot for cylinder 002.
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Figure 35. Pressure vs. strain plot for cyllinder 003.
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Figure 37. Pressure vs. strain plot for cyllinder 005.
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Figure 38. Pressure vs. strain plot for cylinder 006.
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Figure 39. Pressure vs. strain plot for cyllinder 007.
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Figure 40. Pressure vs. strain plot for cylinder 008.
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Figure 41. Pressure vs. strain plot for cylinder 009, pressurization No. 1.
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Figure 42. Pressure vs. strain plot for cylinder 009, pressurization No. 2.
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Figure 43. Pressure vs. strain plot for cylinder 010, pressurization No. 1.
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Table 1. Typical properties for PSX commercial grade of silicon nitride.

Bulk Density

Flexural Strength (MOR})
@ RT, 4 point average

Characteristic Strength

@ RT, 4 point
Weibull Modulus (m)

Elastic Modulus (E)

Poisson's Ratio (v}

Hardness (Knoop 1 kg)

Fracture Toughness (Vickers)

Thermal Expansion (RT-1000°C)

Thermal Conductivity (RT)

Thermal Shock Resistance (AT,)

3.29

703
102

744
108

14

317
46

0.24

6.0
3.3
30.0

700

g/lemd

MPa
ksi

MPa
ksi

Gpa
Mpsi

kg/mm?2
MPam?12
10¢/°C
W/mK

°C

Table 2. Actual dimensions of deliverable PSX cylinders.

Cylinder No. Outer diameter Wall thickness Length
Si,N, 001 12 0.412 18
Si;N, 002 12 0.412 18
Si;N, 003 12 0.412 18
Si;N, 004 12 0.412 18
Si,N, 005 12 0.412 18
Si;N, 006 12.077 0.418 13.0
Si,N, 007 12.056 0.413 16.0
Si;N, 008 12.070 0.416 17.938
Si;N, 008 12.058 0.415 18.0
Si;N, 010 12.041 0.406 18.0
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Table 4. Summary of findings made in PSX cylinders using pulse-echo ultrasonic inspection.

Cylinder | Number of Indications indication/Depth
No. (return signal amplitude*/inches below
surface)

Si,N, 001 2 32% @0.2; 45% @0.3

Si;N, 002 4 57% @0.3; 59% @0.12; 69% @0.12;
4dB @0.27

Si;N, 003 4 43% @0.10; 46% @0.2; 62% @0.3;
63% @0.18

Si;N, 004 4 21% @0.3; 24% @0.2; 32% @0.2; 42%

@0.2

Si,N, 005 4 66% @0.12; 83% @0.1; 92% @0.13;
4dB @0.13

Si,N, 006 9 47% @0.15; 50% @0.15; 51% @0.2;

51% @0.3; 54% @0.2; 56% @0.2; 58%
@0.3; 62% @0.2; 80% @0.25

Si;N, 007 13 40% @0.35; 46% @0.2; 49% @0.3; 53%

@0.2; 55% @0.15; 59% @0.3; 67%

@0.2; 79% @0.1; 80% @0.15; 80%

@0.15; 90% @0.1; 90% @0.3; 93%
@0.15

Si;N, 008 17 47% @0.35; 52% @0.3; 54% @0.2; 54%
@0.3; 61% @0.3; 62% @0.35; 77%
@0.15; 78% @0.3; 82% @0.3; cluster
up to 85% @0.1-0.3; 1dB@0.2; 2dB
@0.15; 2dB @0.2; 3dB @0.3; 4dB
@0.3; 6dB @0.15; 8dB @0.3

Si;N, 009 22 30% @0.35; 45% @0.23; 65% @0.2;
65% @0.15; 70% @0.15; 70% @0.2;
75% @0.25; 75% @0.2; 76% @0.2; 80%
@0.3; 80% @0.2; 80% @0.35; 83%
@0.15; 85% @0.3; 90% @0.20; 90%
@0.15; 90% @0.3; 95% @0.15; 95%
@0.3; 95% @0.15

Si;N, 010 10 24% @0.3; 26% @0.3; 38% @0.2; 42%

@0.3; 56% @0.15; 62% @0.15; 70%

@0.35; 74% @0.25; 7dB @0.2; 28%
@0.25

ole. Return signal ampiRude 1s caliorated so thal B0% ampiude 1 equal 10 Thal retumed by a 132"

flat-bottom drilled hole. Indications which are theoretically larger than 1/32" dia. are shown bold.

61



FEATURED RESEARCH

‘ainsseud onejsoipAy reuseixs jsd 000‘0) O} uonezunsseid puooes uo suiens :8ioN ,

Tyt ve0 9000 9000 'A8Q'IS
ve'SYy 96°cP G20 2920 ueapy
.62 + 6582 6+ 2L
8c'9p AR 1820 620 IE + £¥82 8+€2L 010 'N°IS
+Ob + 0¥8e 82 + ¥2L
¥S'SP S6'EY 182°0 120 8y + 182 0€ + 2€L 600 "N°1S
9Evy 00'v¥ 0820 120 601 + €162 0L+ SpL 800 "N®iS
6¥'SY 99°eP 2Leo 920 €2 + 1282 2y + 652 200 'N°iS
26°GY 61 v¥ 2920 920 9€ + 2€82 €€ + 9.4 900 "N°1S
Wby €9'EY 2Leo 920 02 + ¥€62 v8 + viL 500 "NIS
L6°9¥ 00'v¥ 820 920 89 + 69/2 €E+ viL 00 "N°iS
L6'EY 98'eY 620 920 €V + 2562 6€ + 66 €00 'N°1S
8L'GY 0S°EY 1920 920 802 + ¥582 L + 292 200 'N°IS
6SEY 69'v¥ LL20 .20 Gy + 1862 T +eLL 100 "N°iS
(1sW) sninpoyy | (1sW) sninpon oney oney dooH ey
eAIssaidwon enissesdwon S,U0SS104 S,U0SSs10d (youysayouioion) einsseid
pejenoje)d painsesiy pelejnojen painseapy [euiexe |sd 000‘01 Je suens lepuljfn

S1apullfd XSd 1o Ja1awelp Aeg-piw Jauul

‘ainssald aneIsoIpAy [eulaixa 1sd-000‘0T 1e
uo painseauw sulens [eixe pue dooy abelony "G a|gel

62



FEATURED RESEARCH

Table 6. Summary of test plans and results for cylinders 001 through 010, Sheet 1.

Cylinder No. Test Test Plan/Test Resuit
Configuration

Si;N, 001 1} Proof test cylinder to 16,000 psi, read strains. Cycle
cylinder to 16,000 psi, stop testing after 2,000 cycles.

1-proof cycle to 16,000 psl. Cylinder withstood 581
cyciles to 16,000 psl. Testing was terminated due to
leakage.

Si,N, 002 ] Proof test cylinder to 16,000 psi, read strains. Cycle
cylinder to 16,000 psl, stop testing after 2,000 cycles.

1-proof cycle to 16,000 ps!, no damage noted. Cylinder
falied on cycle number 337 during pressurization.

Si,N, 003 ] Proof test cylinder to 13,000 psi, read strains. Cycle
cylinder to 13,000 psi, stop testing after 2,000 cycles.

1-proof cycle to 13,000 psl, no damage noted. Cylinder
falled on cycle number 1,379 during pressurization.

Si;N, 004 | Proof test cylinder to 9,000 psi, read strains. Cycle
cylinder to 8,000 psi, stop testing after 3,000 cycles.

1-proof cycle to 9,000 psl, no damage noted. Cylinder
withstood 3,008 cycles to 9,000 psl without visisble
damage.

Si,N, 005 I Proot test cylinder to 12,000 psi, read strains. Cycle
cylinder to 12,000 psi, stop testing after 3,000 cycles.

1-proof cycle to 12,000 psl, no damage noted. Cylinder
failed on cycle nhumber 743 during pressurization.
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Table 6. Summary of test plans and results for cylinders 001 through 010, Sheet 2.

Cylinder No.

Test
Contiguration

Test Plan/Test Resuit

Si,N, 006

]
sand-blasted ends

Proof test cylinder to 12,000 psi, read strains. Cycle
cylinder to 12,000 psi, stop testing after 3,000 cycles.

1-proof cycle to 12,000 psi, no damage noted. Cylinder
withstood 2,241 cycles to 12,000 psl without visible
damage.

Si,N, 007

I
sand-blasted ends

Proof test cylinder to 11,000 psi, read strains. Cycle
cylinder to 11,000 psi, stop testing after 3,000 cycles.

1-proof cycle to 11,000 psi, no damage noted. Cylinder

_withstood 3,010 cycles to 11,000 psi without visible

damage.

SN, 008

]
sand-blasted ends

Proof test cylinder to 11,000 psi. Cycle cylinder to 11,000
psi, stop testing after 3,000 cycles.

1-proof cycle to 11,000 psl. No damage noted. Cylinder
falled on cycle number 1,665.

SN, 009

1]
sand-blasted ends

Proof test cylinder to 10,000 psi, read strains. Then
pressurize to failure while reading strains.

1-proof cycle to 10,000 psi, no damage noted. Cylinder
was pressurized to fallure which occured at 22,600
psi.

SN, 010

]
sand-blasted ends

Proof test cylinder to 10,000 psi, read strains. Then
pressurize to failure while reading strains.

1-proof cycle to 10,000 psi, no damage noted. Cylinder
was pressurized to faliure which occured at 21,600
psl.
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Table 7. Comparison of cyclic pressure testing performance of PSX Silicon Nitride
cylinders and of AL-600 96-percent alumina-ceramic cylinders.

External Maximum nominal Number of pressurizations
hydrostatic hoop stress
pressure (psi) (psi) Cercom PSX Wesgo AL600
Si,N, 96% AlLO,
cylinder cylinder
9,000 131,067 withstood 3,008 withstood 3,000
10,000 145,631
11,000 160,194 withstood 3,000 withstood 1,380
failure at 1,665 failure at 2,969
12,000 174,757 withstood 2,241 failure at 1,065
failure at 743
12,500 182,039
13,000 189,320 failure at 1,379 failure at 762
14,000 203,883 failure at 214
15,000 218,447 failure at 707
16,000 233,010 Leakage at 581
failure at 337
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